Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Population Genomics Reveals Demographic History and Genomic Differentiation of Populus davidiana and Populus tremula.

Identifieur interne : 000192 ( Main/Exploration ); précédent : 000191; suivant : 000193

Population Genomics Reveals Demographic History and Genomic Differentiation of Populus davidiana and Populus tremula.

Auteurs : Zhe Hou [République populaire de Chine] ; Ang Li [République populaire de Chine]

Source :

RBID : pubmed:32849683

Abstract

Forest trees can increase our understanding of how evolutionary processes drive the genomic landscape and understand speciation due to the majority of forest trees being distributed widely and able to adapt to different climates and environments. Populus davidiana and Populus tremula are among the most geographically widespread and ecologically important tree species in Northern Hemisphere. Whole-genome resequencing data of 41 individuals of P. davidiana and P. tremula throughout Eurasia was conducted, finding that genetic differentiation was evident between the two species, the FST values between P. davidiana and P. tremula was 0.3625. The ancestors of the two aspen diverged into P. davidiana and P. tremula species approximately 3.60 million years ago (Mya), which was in accordance with the rapid uplift of Qinghai-Tibet Plateau (QTP) around the Miocene/Pliocene boundary. The two species experienced a considerable long-term bottleneck after divergence, with population expansion beginning approximately 20,000 years ago after the end of the last glacial maximum. Although the majority of regions of genomic differentiation between the two species can be explained by neutral evolutionary processes, some outlier regions have also been tested that are significantly influenced by natural selection. We found that the highly differentiated regions of the two species exhibited significant positive selection characteristics, and also identified long-term balancing selection in the poorly differentiated regions in both species. Our results provide strong support for a role of linked selection in generating the heterogeneous genomic landscape of differentiation between P. davidiana and P. tremula. These results provide the detailed and comprehensive genomic insights into genetic diversity, demography, genetic burden, and adaptation in P. davidiana and P. tremula.

DOI: 10.3389/fpls.2020.01103
PubMed: 32849683
PubMed Central: PMC7396531


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Population Genomics Reveals Demographic History and Genomic Differentiation of
<i>Populus davidiana</i>
and
<i>Populus tremula</i>
.</title>
<author>
<name sortKey="Hou, Zhe" sort="Hou, Zhe" uniqKey="Hou Z" first="Zhe" last="Hou">Zhe Hou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong</wicri:regionArea>
<wicri:noRegion>Nanchong</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Ang" sort="Li, Ang" uniqKey="Li A" first="Ang" last="Li">Ang Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong</wicri:regionArea>
<wicri:noRegion>Nanchong</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32849683</idno>
<idno type="pmid">32849683</idno>
<idno type="doi">10.3389/fpls.2020.01103</idno>
<idno type="pmc">PMC7396531</idno>
<idno type="wicri:Area/Main/Corpus">000125</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000125</idno>
<idno type="wicri:Area/Main/Curation">000125</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000125</idno>
<idno type="wicri:Area/Main/Exploration">000125</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Population Genomics Reveals Demographic History and Genomic Differentiation of
<i>Populus davidiana</i>
and
<i>Populus tremula</i>
.</title>
<author>
<name sortKey="Hou, Zhe" sort="Hou, Zhe" uniqKey="Hou Z" first="Zhe" last="Hou">Zhe Hou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong</wicri:regionArea>
<wicri:noRegion>Nanchong</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Ang" sort="Li, Ang" uniqKey="Li A" first="Ang" last="Li">Ang Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong</wicri:regionArea>
<wicri:noRegion>Nanchong</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Forest trees can increase our understanding of how evolutionary processes drive the genomic landscape and understand speciation due to the majority of forest trees being distributed widely and able to adapt to different climates and environments.
<i>Populus davidiana</i>
and
<i>Populus tremula</i>
are among the most geographically widespread and ecologically important tree species in Northern Hemisphere. Whole-genome resequencing data of 41 individuals of
<i>P. davidiana</i>
and
<i>P. tremula</i>
throughout Eurasia was conducted, finding that genetic differentiation was evident between the two species, the
<i>F
<sub>ST</sub>
</i>
values between
<i>P. davidiana</i>
and
<i>P. tremula</i>
was 0.3625. The ancestors of the two aspen diverged into
<i>P. davidiana</i>
and
<i>P. tremula</i>
species approximately 3.60 million years ago (Mya), which was in accordance with the rapid uplift of Qinghai-Tibet Plateau (QTP) around the Miocene/Pliocene boundary. The two species experienced a considerable long-term bottleneck after divergence, with population expansion beginning approximately 20,000 years ago after the end of the last glacial maximum. Although the majority of regions of genomic differentiation between the two species can be explained by neutral evolutionary processes, some outlier regions have also been tested that are significantly influenced by natural selection. We found that the highly differentiated regions of the two species exhibited significant positive selection characteristics, and also identified long-term balancing selection in the poorly differentiated regions in both species. Our results provide strong support for a role of linked selection in generating the heterogeneous genomic landscape of differentiation between
<i>P. davidiana</i>
and
<i>P. tremula</i>
. These results provide the detailed and comprehensive genomic insights into genetic diversity, demography, genetic burden, and adaptation in
<i>P. davidiana</i>
and
<i>P. tremula</i>
.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32849683</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Population Genomics Reveals Demographic History and Genomic Differentiation of
<i>Populus davidiana</i>
and
<i>Populus tremula</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>1103</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.01103</ELocationID>
<Abstract>
<AbstractText>Forest trees can increase our understanding of how evolutionary processes drive the genomic landscape and understand speciation due to the majority of forest trees being distributed widely and able to adapt to different climates and environments.
<i>Populus davidiana</i>
and
<i>Populus tremula</i>
are among the most geographically widespread and ecologically important tree species in Northern Hemisphere. Whole-genome resequencing data of 41 individuals of
<i>P. davidiana</i>
and
<i>P. tremula</i>
throughout Eurasia was conducted, finding that genetic differentiation was evident between the two species, the
<i>F
<sub>ST</sub>
</i>
values between
<i>P. davidiana</i>
and
<i>P. tremula</i>
was 0.3625. The ancestors of the two aspen diverged into
<i>P. davidiana</i>
and
<i>P. tremula</i>
species approximately 3.60 million years ago (Mya), which was in accordance with the rapid uplift of Qinghai-Tibet Plateau (QTP) around the Miocene/Pliocene boundary. The two species experienced a considerable long-term bottleneck after divergence, with population expansion beginning approximately 20,000 years ago after the end of the last glacial maximum. Although the majority of regions of genomic differentiation between the two species can be explained by neutral evolutionary processes, some outlier regions have also been tested that are significantly influenced by natural selection. We found that the highly differentiated regions of the two species exhibited significant positive selection characteristics, and also identified long-term balancing selection in the poorly differentiated regions in both species. Our results provide strong support for a role of linked selection in generating the heterogeneous genomic landscape of differentiation between
<i>P. davidiana</i>
and
<i>P. tremula</i>
. These results provide the detailed and comprehensive genomic insights into genetic diversity, demography, genetic burden, and adaptation in
<i>P. davidiana</i>
and
<i>P. tremula</i>
.</AbstractText>
<CopyrightInformation>Copyright © 2020 Hou and Li.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hou</LastName>
<ForeName>Zhe</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Ang</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus davidiana</Keyword>
<Keyword MajorTopicYN="N">Populus tremula</Keyword>
<Keyword MajorTopicYN="N">demographic history</Keyword>
<Keyword MajorTopicYN="N">genetic adaptation</Keyword>
<Keyword MajorTopicYN="N">genetic diversity</Keyword>
<Keyword MajorTopicYN="N">population genomics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32849683</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.01103</ArticleId>
<ArticleId IdType="pmc">PMC7396531</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2004 Feb 29;359(1442):183-95; discussion 195</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15101575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2018 Sep 6;103(3):338-348</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30100085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 Oct;24(19):4994-5005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26334549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Mar 4;464(7285):54-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20164837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Feb;12(2):111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2014 Nov 25;15:356</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25420514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013 Oct;9(10):e1003905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24204310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1995 Dec;141(4):1619-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8601499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2003 Dec;4(12):981-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14631358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Feb 13;11(2):e1004966</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25679225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):E236-E243</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29279400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2008 Jun;95(6):720-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21632398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2009 Sep;51(9):889-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19723248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2014;48:519-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25251849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Jun 22;405(6789):907-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10879524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(Web Server issue):W622-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22684630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2015 Aug;24(16):4238-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26175196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jul;155(3):1405-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10880498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Jul;23(13):3133-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24845075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2009 Feb;18(3):375-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19143936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Sep;3(9):e285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16076241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Sep;180(1):329-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18716330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2018 Sep 1;35(9):2260-2271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29931308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2012 Feb 5;367(1587):364-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22201166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2014 Mar;15(3):176-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24535286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Oct 7;334(6052):83-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21980108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Nov 6;5(11):e310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17988176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2015 Nov;25(11):1656-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26355005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2020 Mar;29(6):1120-1136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32068935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Aug 12;9(8):e103645</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25116432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1754-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26983554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 May;43(5):491-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Oct;22(20):5237-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24118118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics Proteomics Bioinformatics. 2017 Feb;15(1):14-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28387199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2017 Jun;27(6):1004-1015</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28442558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Aug 1;27(15):2156-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2016 Jun 01;6(6):1563-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27172192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2009 Dec;103(6):439-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19920849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2014 Aug;46(8):919-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24952747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Jan 22;10:5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30723484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2005;39:197-218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16285858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2012 Feb 5;367(1587):409-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22201170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Nov;195(3):693-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24026093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2011 Apr;59(1):225-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21292014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):E10970-E10978</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30373829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2012 Feb 5;367(1587):332-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22201163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 Dec;123(4):887-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2612899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2004 Jun;13(6):1341-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2010 Feb;10(3):406-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19943265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9939-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19528641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Sep;15(9):1222-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16140990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jul 13;475(7357):493-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21753753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Nov 29;491(7426):756-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23103876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Oct;17(10):1483-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11018155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 May 15;30(10):1486-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24458950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2013 Apr;14(4):262-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23478346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1993 Mar;133(3):693-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8454210</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Hou, Zhe" sort="Hou, Zhe" uniqKey="Hou Z" first="Zhe" last="Hou">Zhe Hou</name>
</noRegion>
<name sortKey="Hou, Zhe" sort="Hou, Zhe" uniqKey="Hou Z" first="Zhe" last="Hou">Zhe Hou</name>
<name sortKey="Li, Ang" sort="Li, Ang" uniqKey="Li A" first="Ang" last="Li">Ang Li</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000192 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000192 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32849683
   |texte=   Population Genomics Reveals Demographic History and Genomic Differentiation of Populus davidiana and Populus tremula.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32849683" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020